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Abstract 
State transportation agencies regularly collect data on pave-
ment surface distresses. These data are used to assess overall 
pavement conditions and to make maintenance and repair de-
cisions. Routinely-acquired and publically-available high spa-
tial resolution (HSR) multispectral digital aerial photography 
provides a potential method for collecting distress information 
that can supplement or replace currently-used technologies. 
Principal component analysis and linear least squares regres-
sion models were used to evaluate the potential of using HSR 
multispectral digital aerial photographs to estimate pavement 
surface overall distress conditions. Various models were de-
veloped using HSR multispectral digital aerial photographs of 
different spatial resolution (6-inch, 12-inch, and 24-inch) and 
reference pavement surface distress data collected manually 
at multiple sample sites using standard protocols. The results 
show that the spectral response of HSR multispectral digital 
aerial photographs correlate strongly with reference distress 
rates at all tested spatial resolutions, but the 6-inch aerial 
photos exhibit the strongest correlation (R2 > 0.95), even when 
using only half of the sample sites (R2 > 0.92). These results in-
dicate that straightforward analysis of HSR multispectral digital 
aerial photographs, routinely acquired by most municipalities 
and states, can permit assessment of pavement surface distress 
conditions as well as current manual evaluation protocols. 

Introduction
The serviceability of road networks primarily relies on pave-
ment conditions, and subsequently, federal, state, and local 
transportation agencies dedicate a large amount of time and 
money to routinely evaluate pavement conditions as part of 
their management programs. Pavement surface distress data 
are collected and used by these agencies to determine the 
serviceability of individual roads, and then to make decisions 
on the distribution of limited resources for maintenance and 
construction projects. 

Currently, most state and local transportation agencies use 
either manual evaluation or automated evaluation to collect 
data solely for the purpose of pavement surface evaluation at 
significant expense (McGhee, 2004). We therefore explore the 
utility of routinely-acquired and publically-available high spa-
tial resolution (HSR) visible range digital aerial photography to 
supplement or replace dedicated surveys of pavement surface 

condition. Many counties and municipalities routinely ac-
quire HSR multispectral digital aerial photos, and most make 
these images freely available to the public. These photos cover 
all ground features including roadways, meaning they contain 
information that may permit discrimination of pavement sur-
face distress. Modern aerial photographs are in digital format, 
which means they can be readily shared with partner agencies 
and analyzed to produce standardized results through image 
processing techniques. The availability of these images offers 
the potential of using routinely-collected and publically-
available data for standardized evaluation of pavement surface 
distress, reducing the evaluation cost and time while improv-
ing the comparability of results. 

This paper explores the utility of routinely-acquired and 
publically-available HSR multispectral digital aerial pho-
tography for the evaluation of overall pavement surface 
distress. Specifically, the intent of this study is to examine 
how well overall pavement surface distress can be estimated 
from HSR multispectral digital aerial photography. Principal 
components analysis (PCA) and linear least squares regres-
sion models were used to evaluate the potential of using HSR 
multispectral digital aerial photographs to infer pavement 
surface distress.

Background
Pavement surface distress information is essential to pave-
ment management. Pavement management activities and deci-
sions at all levels (i.e., federal, state, and local) are supported 
by pavement surface condition information of varying detail 
(Haas et al., 1994). Pavement evaluation can lead to effective 
allocation of limited resources for timely maintenance and 
repair (Haas et al., 1994; Hudson and Uddin, 1987). Pavement 
evaluation is also necessary to measure the effectiveness of 
various maintenance techniques and repair methods (Hudson 
et al., 1987; Hudson and Uddin, 1987). 

To characterize the conditions of existing pavements, 
surveys are conducted to assess one or more of four criteria: 
roughness, distress, structural capacity, and friction (Gram-
ling, 1994). Pavement distress and roughness are the basic ele-
ments typically included in quantification of the overall pave-
ment condition, although structural capacity and friction may 
also be incorporated (Gramling, 1994; Prakash et al., 1994).  

Current Pavement Surface Distress Evaluation Methods
Currently, two types of pavement surface distress evalua-
tion methods have been broadly adopted by state and local 

Su Zhang, Susan M. Bogus, Guohui Zhang, Cong Chen, 
and Vanessa Valentin are with the Department of Civil 
Engineering, University of New Mexico, Albuquerque, NM 
87131-0001 (suzhang@unm.edu).

Christopher D. Lippitt is with the Department of Geography  
and Environmental Studies, University of New Mexico, 
Albuquerque, NM 87131-0001.

Paul R.H. Neville is with the Earth Data Analysis Center, 
University of New Mexico, Albuquerque, NM 87131-0001.

Photogrammetric Engineering & Remote Sensing
Vol. 81, No. 9, September 2015, pp. 709–720.

0099-1112/15/709–720
© 2015 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.81.9.709

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 September  2015 	 709

09-15 September Peer Reviewed.indd   709 8/19/2015   10:58:33 AM



Delivered by Ingenta
IP: 129.24.0.5 On: Mon, 17 Dec 2018 21:56:55

Copyright: American Society for Photogrammetry and Remote Sensing

transportation agencies: automated evaluation (machine 
observation and machine analysis) and manual evaluation 
(human observation and human analysis). Most state or local 
transportation agencies use one of these two aforementioned 
methods or a combination of them. Each method has advan-
tages and disadvantages.

Only a few state and local transportation agencies are still 
using manual methods to survey the surface distress of high-
way pavement (Bandini et al., 2012). Using this method, data 
are collected by inspectors walking along a section of pave-
ment and rating the level of distress. These data are primarily 
handwritten data and attached to archived images acquired by 
inspectors on the ground. Manual evaluation methods can col-
lect detailed information for various types of distresses, and it 
is the reason that this method is still used. However, this meth-
od is expensive, extremely labor intensive, time-consuming, 
and data collected by different inspectors can exhibit a high 
degree of variability (Bogus et al., 2010). Manual evaluation is, 
therefore, sometimes unable to provide meaningful quantita-
tive information, and eventually leads to inconsistencies in 
distress conditions over space and across evaluation (Cheng et 
al., 1999; Hudson and Uddin, 1987; Wang and Li, 1999; Wang, 
2000). In addition, manual evaluation relies on the subjective 
evaluation of distress type, extent, and severity by a trained 
inspector based on visual observation (Hudson and Uddin, 
1987), which means the evaluation results are prone to subjec-
tive bias. Another problem with manual evaluation is that it 
is potentially dangerous to inspectors. Crews must walk along 
the side the road to perform their evaluation and, despite 
safety precautions (e.g., safety training and high-visibility gar-
ments), are exposed to significant risk of personal injury. 

In an attempt to address the shortcomings of manual evalu-
ation, many transportation agencies have adopted automated 
technology to conduct distress surveys (Bandini et al., 2012). 
The automated methods typically include the use of vehicle-
mounted electronic sensors at a fine enough spatial resolu-
tion to detect individual distress measures (e.g., cracks) in 
the pavement surface. The application of automated surveys 
based on a variety of electronic sensors (e.g., video cameras 
and laser sensors) became common in the 1980s (Curphey et 
al., 1985; Haas et al., 1985; Hudson and Uddin, 1987). These 
various types of sensors are designed to detect and assess 
either a specific type of individual distress such as trans-
verse cracks or a specific type of pavement such as concrete 
(Uddin et al., 1987; Hudson et al., 1987; Hudson and Uddin, 
1987; Mahler et al., 1991; Georgopoulos et al., 1995; Pynn 
et al., 1999; Lee and Kim, 2005; Huang and Xu, 2006; Zhou 
et al., 2006; Oliveira and Correia, 2008; Nguyen et al., 2009; 
Coudray et al., 2010; Gavilan et al., 2011; Koch and Brilakis, 
2011; Adarkwa and Attoh-Okine,  2013). 

Although automated evaluations can collect detailed 
information quickly and safely, and technological advances in 
computer hardware and imaging recognition have improved 
the performance of the automated evaluation methods, seri-
ous problems still remain in the areas of implementation 
costs, processing speed, and accuracy (Wang, 2000). Automat-
ed methods require significant time to process data to extract 
useful information, since it requires very complicated ana-
lytical models and algorithms (Wang, 2000). These methods 
require substantial technical expertise and are expensive to 
deploy, requiring specially trained operators. In addition, data 
are collected on the ground as a single task and cannot be 
shared with other partner agencies to reduce the cost because 
a single image can only cover a small area which is usually 
less than five square meters (McGhee, 2004). For example, 
the Vermont Agency of Transportation reported costs of up 
to $170 USD per mile in urban areas for automated evaluation 
(McGhee, 2004). 

Pavement Surface Distress Evaluation from Aerial Photography
Pavement evaluation from aerial photography is not a new 
idea, but is also not used for operational evaluation of pave-
ment surface distresses yet. The application of an aerial 
photography-based evaluation method to pavement surface 
distress was first implemented in the 1950s. Several studies 
(McMaster and Legault, 1952; Stoeckeler, 1968; Stoeckeler, 
1970) focused on visually comparing analog panchromatic 
aerial photographs to determine pavement surface distress. 
They concluded that untreated cracks and other pavement 
defects (e.g., patching and bleeding) can be identified through 
the visual analysis. Although they concluded that visual 
analysis of panchromatic analog aerial photography is a prac-
tical means of conducting pavement condition surveys, it is 
not used for operational pavement surface distress evaluation. 
This is because cracks are distinguishable only in large scale 
(e.g., 1:100) analog panchromatic aerial photographs and the 
associated cost is extremely high.

Chen et al. (2011) proposed a method of analyzing very 
high spatial resolution (VHSR) multispectral digital aerial 
photography to detect large cracks on bridge pavement. Crack 
type, length, width, and severity were measured from the 
post-processed VHSR multispectral digital aerial photography, 
and then these measurement results were used in a bridge 
surface condition index (BSCI) rating system to calculate the 
distress conditions. However, in their research, the collec-
tion of the VHSR multispectral digital aerial photography was 
customized to fulfill the specific bridge pavement evaluation 
purpose. In other words, the collected aerial photos, like the 
pavement evaluation methods that are currently used opera-
tionally, serve only a single purpose and therefore represent 
an expensive option for routine distress evaluation.

There are many programs to routinely collect HSR mul-
tispectral digital aerial photography. For example, with the 
support of the National Agricultural Imagery Program (NAIP), 
the United States Geological Survey (USGS) and the United 
States Department of Agriculture (USDA) regularly acquire 
digital, color-infrared, ortho-corrected aerial photography 
which covers all states at 1-meter spatial resolution, and they 
provide the data to the public for free. Many counties and cit-
ies now routinely acquire natural color 6-inch (0.1524-meter) 
and even 3-inch (0.0762-meter) spatial resolution, ortho-
corrected aerial photos. In addition, some states have initiated 
the program to regularly acquire statewide aerial photos. For 
example, the State of Missouri images the entire state regular-
ly with 2-foot (0.6096-meter) spatial resolution multispectral 
digital aerial photographs (Wright, 2014). It would not be hard 
to imagine more states to moving to do so because the uses for 
these data continue to expand. 

Past and current research for pavement distress evaluation 
has focused on the detection of individual distresses (e.g., an 
individual crack). This information is commonly aggregated to 
determine the overall level of pavement distress, which is then 
used by transportation agencies for planning purposes. Ac-
cording to Stoeckeler (1970), cracks are only distinguishable 
in large-scale (e.g., 1:100) aerial photographs. A key limitation 
of the routinely collected HSR multispectral aerial photography 
is that its spatial resolution is too coarse to enable the detec-
tion and quantification of individual distresses. As a result, 
this research does not focus on assessing individual distresses, 
but rather, on estimating the overall condition by analyzing 
the brightness and variation of resolution cells. Specifically, 
the research presented here is focused on analyzing HSR 
multispectral digital aerial photographs to determine overall 
pavement distress rates through pixel-based spectral response 
assuming an L-resolution scene model (Strahler, 1986). 
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Methodology
PCA and multiple linear least square regression models were 
used to model the relationship between the dependent vari-
able of overall distress rate (ODR) and explanatory variables 
extracted from the spectral response of the HSR multispectral 
digital aerial photography. The ultimate goal is to be able to 
predict the ODR for roadway segments for which ODR ground 
reference values are unavailable. 

Data Acquisition and Preparation
The study area for this research encompasses six counties in 
northern New Mexico, including Bernalillo, Cibola, Sandoval, 
Santa Fe, Torrance, and Valencia. These counties are located 
around the City of Albuquerque and are covered by all of the 
existing HSR multispectral digital aerial photographs with var-
ious spatial resolutions obtained from 2004 to 2012. Within 
the study area, 50 data collections sites were identified for use 
in this study. Each data collection site covers the rightmost 
lane with a length of one tenth of a mile. These sites were 
selected because they belong to a set of pavement sections 
regularly evaluated as part of the New Mexico Department of 
Transportation (NMDOT) pavement evaluation program.

The road segments of these 50 study sites were visually 
evaluated in reference to the available HSR multispectral digi-
tal aerial photographs to ensure they were covered by aerial 
photographs, and there are no large obstacles (e.g., bridges 
and overpasses) above them. A geographic information sys-
tem (GIS) database provides the roadway number, milepost 
number, and direction for each study site. 

Reference pavement surface condition data for the study 
sites were acquired from records of manual pavement evalu-
ations conducted for NMDOT during the summer of 2009 
(Cordova et al., 2009). All of the study sites were constrained 
to flexible, asphalt pavements. For flexible pavements, the 
NMDOT evaluates severity and extent of the following seven 
distresses on a scale of 0 to 3 (0 = Not Present, 1 = Low, 2 
= Medium, and 3 = High): (1) Raveling and Weathering; (2) 
Bleeding; (3) Longitudinal Cracking;(4) Transverse Cracking; 
(5) Alligator Cracking; (6) Edge Cracking; and (7) Patching. 
It should be noted that the listed distresses are all horizontal 
distress, and they do not reflect distresses in elevation such as 
rutting and shoving. This makes the use of HSR multispectral 
digital aerial photographs to detect pavement surface overall 
distress rate (ODR) possible since elevation information cannot 
be found in a typical aerial photograph (the exception being 
stereoscopic aerial photographs).

Each study site’s ODR can be calculated based on the fol-
lowing equation:

	 ODR = ∑7
i=1(αi × βi × γi)	 (1)

where i represents each of the seven distresses, α denotes the 
severity rating, β denotes the extent rating, and γ denotes the 
weighting factor. The weighting factors for the distresses have 
been provided by NMDOT and are 3, 2, 12, 12, 25, 3, and 2, 
respectively, for each of the seven distresses. The calculated 
ODR for each of the 50 study sites ranges from 0 to 477. The 
lower the ODR value, the better the pavement condition. The 
maximum possible value is 504. ODR can be easily converted 
to Present Serviceability Index (PSI), which is broadly used by 
various transportation agencies (Bandini et al., 2012). Differ-
ent agencies can develop and establish their own models to 
infer the overall pavement surface conditions, no matter what 
particular metric they are using.

One set of archived and readily available ortho-corrected 
HSR multispectral digital aerial photographs with a spatial 
resolution of 6-inches were obtained from the Earth Data 
Analysis Center (EDAC) at the University of New Mexico. The 
aerial photographs are natural color digital aerial photography 

that records energy in the region from 0.4-micrometer to 
0.7-micrometer range, and they have three spectral bands 
which include visible blue (0.4 to 0.5 micrometers), visible 
green (0.5 to 0.6 micrometers) and visible red (0.6 to 0.7 mi-
crometers) (Jensen, 2007). These images are in 8-bit data for-
mat and are the actual digital numbers recorded. In addition, 
these aerial photographs are routinely (every the other year) 
collected with the Zeiss/Intergraph Digital Mapping Camera 
(DMC) System by the Mid-Region Council of Governments 
(MRCOG) contracted to Bohannan-Huston, Inc. 

The aerial photographs were taken in March through April 
2010 and were matched with the manually-collected pave-
ment condition data collected in May through August 2009. 
This was the closest time match between the aerial photo-
graphs and the pavement condition data available. According 
to the Federal Highway Administration, it is approximately 
a 15-year process for pavement surface condition to drop 50 
percent in quality (Lenz, 2011). Because the time elapsed 
between the pavement condition data collection and aerial 
photographs collection was less than a year (approximately 
six months), we assume that no significant change occurred at 
the study site. 

Image Processing

Image Aggregation
Data on actual pavement surface conditions were collected on 
short sections (0.1-mile [161-meters]) of pavement located at 
specific mileposts. In order to identify the evaluation zone of 
each study site on the aerial photographs, a buffer of 0.1-mile 
was created around each individual study site’s milepost in 
the aerial photographs. After creating the buffers, the evalua-
tion zone of several study sites could not be completely cov-
ered by a single 6-inch image, because the aerial photographs 
were divided into tiles to reduce the storage size. In this case, 
two or more photographs were needed. When multiple pho-
tographs were used for a single milepost, it was necessary to 
create a mosaic of the aerial photographs. These images were 
mosaicked based on standard overlay-based algorithm and 
average blending mode.

Evaluation Polygon Creation
Pavement surface conditions are only evaluated within a 
portion of the roadway. According to the protocol for manual 
evaluation employed by NMDOT (Cordova et al., 2009), pave-
ment surface distress data were collected only in the right-
most driving lane and never in passing lanes, turning lanes, 
or on the shoulder. For two-lane roadways (one driving lane 
in each direction), data were collected only in the positive di-
rection (north and/or east) from a given milepost to a distance 
of 0.1-mile. For multi-lane roadways (two or more driving 
lanes in each direction), data were collected in both the posi-
tive and negative directions (north-south and/or east-west) 
at a given milepost. In the positive direction the pavement 
evaluation was conducted from a given milepost to a distance 
of 0.1-mile, while in the negative direction the evaluation was 
conducted from 0.1-mile prior to the given milepost. This 
ensured that the pavement sections evaluated at the given 
milepost were parallel and aligned to each other. 

To ensure alignment between the data collection zones, 
polygons were created to represent the highway zones used 
in manual evaluation, and from here on referred to as “evalu-
ation polygons.” These evaluation polygons were created by 
heads-up digitizing over the 6-inch resolution aerial photo-
graphs following the protocol mentioned above. It should be 
noted that these manually created polygons only cover the 
pavement surface, and the polygon creation process does not 
involve any removal of the non-road surface elements (e.g., 
vegetation). Therefore, there is no classification involved in 
the analysis. In addition, there are thousands of pixel cells in 
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each evaluation polygon and therefore, results are not likely 
sensitive to omission or commission errors of one or several 
pixels during the digitizing of evaluation polygons.

When creating the evaluation polygons, six types of 
features on the ground were excluded since they are consid-
ered to be noise. These features are center lines, solid white 
shoulder stripes, other pavement markings, overpasses, power 
pole shadows, and vehicles. Figure 1 illustrates the excluded 
features mentioned above. 

Image Degradation 
Most counties and municipalities routinely collect HSR mul-
tispectral digital aerial photography. The spatial resolution of 
most of these images is between 6-inch and 1-meter (40-inch). 
In order to examine how well overall pavement surface distress 
can be estimated from routinely collected HSR multispectral dig-
ital aerial photography, the set of 6-inch aerial photography was 
degraded to 12-inch (0.3048-meter) and 24-inch (0.6096-meter) 
aerial photography. This set of 6-inch aerial photography was 
not degraded to 1-meter because previous research completed 
by Zhang and Bogus (2014) showed that 1-meter natural color 
digital aerial photography lacks the spatial resolution to detect 
overall pavement distress conditions effectively.

Spectral Response Extraction
Only the data within the evaluation polygons are comparable 
to known ODR rates. Once evaluation polygons were digitized 
to correspond to the collected reference or actual ODR data, 
statistics (e.g., mean, median, standard deviation, variety, 
majority, minority, maximum, minimum, range, and sum) 
summarizing the pixel values contained within those evalua-
tion polygons were extracted for each resolution. 

Multiple Linear Least Squares Regression Analysis

Variables
The dependent variable, or response variable, used in this 
study is the ODR described in the previous section. ODR was 
calculated for the field pavement surface distress data col-
lected through manual inspection. 

Selecting the most appropriate independent variables from 
the statistics mentioned in the previous section is neces-
sary for building the regression model. According to Herold 
(2007), the mean value of the spectral response of the visible 
wavelengths has a significant negative relationship with ODR. 
The higher the mean brightness is (higher mean brightness 
value), the better the pavement surface condition is (lower 
ODR value). Pavement surface distresses (e.g., cracks) expose 
deeper layers of the pavement with higher contents of the 
original asphalt mix, which is then manifested in increased 
hydrocarbon absorptions features (Herold, 2007). Therefore, 
degraded pavement surfaces cause less reflectance with in-
creasing hydrocarbon features, while less degraded pavement 
surfaces get brighter with decreasing hydrocarbon features. 
Also, shadows induced by cracks decrease brightness. 

In this research context, image texture, which is a first 
order derivative measure of variation in brightness values, 
may also be a significant variable. Theoretically, the worse 
the pavement surface condition is, the more heterogeneity of 
brightness values should be exhibited, due to the introduc-
tion of shadows associated with cracks and deformations and 
exposure of pavement aggregate (i.e., gravels). For example, 
a very good condition pavement section may have a standard 
deviation value of 4, while a poor one may have standard 
deviation value of 100. Pearson’s correlation analyses were 
performed on a variety of texture measures, and it revealed 

Figure 1. Exclusion of unwanted features on the images.
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that other texture measures including range and variety have 
a strong correlation with standard deviation and therefore, 
only standard deviation was selected as the texture measure. 
Table 1 shows the Pearson’s correlation results.

For each image dataset, (6-inch, 12-inch, and 24-inch digital 
aerial photographs), mean and standard deviation values of each 
band (visible blue, visible green, and visible red) were selected 
as independent variables, resulting in a total of six variables. 
Pearson’s correlation analyses were performed to examine if 
there is correlation among these six variables. The results in 
Table 2 show that in each dataset these six variables have signifi-
cant correlation with ODR. However, there is also significant cor-
relation among these six variables, which violates the assump-
tion of variable independence by linear least squares regression. 

PCA was used on mean and standard deviation values of each 
band of the three datasets to eliminate the correlation among 
the six variables (Pearson, 1901). These principal components 
were used as independent variables for the various linear 
regression models described below. Table 3 shows the resultant 
loadings for each principal component obtained from the PCA.  
Linear Regression
Various multiple linear least squares regression models were 
built based on reference pavement surface ODR data and the 
principal components extracted from the 6-inch, 12-inch, and 
24-inch multispectral, digital aerial photographs. The ultimate 
goal is the identification of the regression model with the 
highest correlation to predict pavement surface ODR values.

The regression model that uses six principal components 
obtained from all three visible bands, Model 1 in Table 4, can 

be expressed as the following equation (Equation 2):

ODR=β0+β1PCA1+β2PCA2+β3PCA3+β4PCA4+β5PCA5+β6PCA6	 (2)

where β0 represents the intercept parameter, PCA1 to PCA6 rep-
resent the six principal components derived from mean and 
standard deviation of each band, and β1 to β6  represent the 
corresponding coefficients.

As shown in Table 3, PCA1 and PCA2 collectively contain 
more than 99 percent of the information contained in the 
aerial imagery. In order to test the significance of the rest prin-
cipal components (PCA3 to PCA6), the first two principal compo-
nents (PCA1 and PCA2) were considered as a break point and PCA3 
to PCA6 were removed from the linear regression, resulting in 
Model 2 (or Equation 3): 

	 ODR=β0+β1PCA1+β2PCA2	 (3)

To analyze which spectral band (visible blue, visible green, 
and visible red) contributes more or is more significant to the 
prediction of ODR, three linear regression models were created 
(Models 3 to 5, or Equations 4 to 6) and they are:

	 ODR=βB0+βB1PCB1+βB2PCB2 	 (4)
	 ODR=βG0+βG1PCG1+βG2PCG2 	 (5)
	 ODR=βR0+βR1PCR1+βR2PCR2 	 (6)

PCB1 to PCB2, PCG1 to PCG2, and PCR1 to PCR2 represent the two 
principal components extracted from the mean values and 

Table 1. Pearson Correlation Results of Texture Measurement of the 6-Inch, 12-Inch, and 24-Inch Natural Color Digital Aerial Photography.

Dataset Variables R1 STD1 V1 R2 STD2 V2 R3 STD3 V3

 6-inch

R1 1.0000

STD1 0.8738 1.0000

V1 0.9790 0.9222 1.0000

R2 0.9952 0.8809 0.9816 1.0000

STD2 0.8746 0.9977 0.9234 0.8823 1.0000

V2 0.9729 0.9267 0.9969 0.9805 0.9300 1.0000

R3 0.9869 0.8491 0.9720 0.9876 0.8536 0.9691 1.0000

STD3 0.8877 0.9888 0.9362 0.8954 0.9926 0.9417 0.8784 1.0000

V3 0.9669 0.8938 0.9884 0.9711 0.8999 0.9891 0.9795 0.9247 1.0000

 12-inch

R1 1.0000

STD1 0.7680 1.0000

V1 0.9001 0.9403 1.0000

R2 0.9949 0.7697 0.9007 1.0000

STD2 0.7676 0.9972 0.9411 0.7733 1.0000

V2 0.8995 0.9342 0.9961 0.9061 0.9395 1.0000

R3 0.9814 0.7474 0.8900 0.9898 0.7541 0.8971 1.0000

STD3 0.7709 0.9874 0.9466 0.7783 0.9919 0.9450 0.7720 1.0000

V3 0.8831 0.9117 0.9861 0.8924 0.9197 0.9901 0.8998 0.9400 1.0000

 24-inch

R1 1.0000

STD1 0.8041 1.0000

V1 0.8915 0.9559 1.0000

R2 0.9956 0.7996 0.8826 1.0000

STD2 0.8034 0.9962 0.9514 0.8043 1.0000

V2 0.8857 0.9518 0.9930 0.8837 0.9535 1.0000

R3 0.9742 0.7631 0.8535 0.9845 0.7744 0.8585 1.0000

STD3 0.7977 0.9830 0.9451 0.8017 0.9906 0.9495 0.7900 1.0000

V3 0.8695 0.9302 0.9780 0.8722 0.9368 0.9843 0.8731 0.9518 1.0000

Note: 1 indicates the visible red band; 2 indicates the visible green band; 3 indicates the visible blue band; R indicates range, STD indicates 
standard deviation, and V indicates variety.
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standard deviation values of the visible blue band, visible 
green band, and visible red band, respectively. βB1 to βB2, βG1 to 
βG2, and βR1 to βR2 represent the corresponding coefficients. βB0, 
βG0, and βR0 represent the corresponding intercept parameters. 

Models 6 and 7 (or Equations 7 to 8) analyze which feature 
combination (i.e., spectral features [mean values] versus tex-
ture features [standard deviation values]) contributes more to 
the ODR prediction capability, and these two models are:

	 ODR=βS0+βS1PCS1+βS2PCS2+βS3PCS3  	 (7)
	 ODR=βT0+βT1PCT1+βT2PCT2+βT3PCT3  	 (8)

PCS1 to PCS3 indicate the three principal components de-
rived from the mean values of each of the three visible bands, 
and βS1 to βS3 represent corresponding coefficients. PCT1 to PCT3 
indicate the three principal components extracted from the 
standard deviation value of each of the three visible bands, 
and βT1 to βT3 represent corresponding coefficients. βS0 and βT0 
represent the intercept parameters.

Validation
In order to test the validity and robustness of the method for 
predicting ODR operationally, we held out 25 of the sites from 
the identified regression model with the highest certainty 
described in the previous section. Among the 50 study sites, 
25 of them were selected using a random sample stratified by 
distress rate and used to develop the regression models while 
the other 25 were used to validate the predicted ODR values 
by root mean squared error (RMSE), mean absolute error, and 
standard error. 

Results and Discussion
Table 4 shows the linear regression results using all six 
principal components (PCA1 to PCA6) and by using only two 

principal components (PCA1 to PCA2). It revealed that remov-
ing PCA3 to PCA6 decreased the R-squared value and increased 
the RMSE for all three datasets. It proved that PCA3 to PCA6 are 
useful components despite containing less than 1 percent of 
the original information. This suggests that all six principal 
components should be used for operational inference of ODR.

Table 4 and Figure 2 show the model fit results (sample 
size = 50) of the 6-inch, 12-inch, and 24-inch models when 
using all six principal components. The 6-inch linear re-
gression model is valid at a 95 percent confidence interval 
(the joint P-value (Prob >F) is less than 0.001). The adjusted 
R-squared value is 0.9439 and the RMSE is 24.087. This er-
ror number is acceptable since the ODR assessed by manual 
evaluation can exhibit an error of up to 84 or up to 50 percent 
in terms of variability (Bogus et al., 2010). This implies that 
natural color aerial photographs with 6-inch spatial resolution 
can be used to assess and predict overall pavement surface 
distress rates.

The 12-inch linear regression model is valid at a 95 per-
cent confidence interval (joint P-value (Prob >F) is less than 
0.001). The adjusted R-squared value is 0.7958, and the RMSE 
is 45.843 which is approximately double that of the 6-inch 
model. This implies that with a higher error, natural color 
digital aerial photographs with 12-inch resolution can also be 
used to assess and predict overall pavement surface distress 
rates. However, 12-inch models still exhibit less error than 
manual evaluation (45.843 <84). 

The 24-inch linear regression model is valid at a 95 per-
cent confidence interval (joint P-value (Prob >F) is less than 
0.001). The adjusted R-squared value is 0.6771 and RMSE is 
57.645. This implies that natural color aerial photographs 
with 24-inch resolution can still be used to assess and predict 
overall pavement surface distress rates, but with the highest 
error of the resolutions assessed. However, it is still bet-
ter than the manual evaluation (57.645 <84), and it has the 

Table 2. Pearson Correlation Results of the Mean Value and Standard Deviation Value of the 6-Inch, 12-Inch, and 24-Inch Natural Color Digital Aerial Photography

Dataset Variables ODR M1 STD1 M2 STD2 M3 STD3

 6-inch

ODR 1.0000

M1 -0.9586 1.0000

STD1 0.9043 -0.8938 1.0000

M2 -0.9512 0.9958 -0.8781 1.0000

STD2 0.9075 -0.9016 0.9987 -0.8871 1.0000

M3 -0.9333 0.9859 -0.8456 0.9922 -0.8565 1.0000

STD3 0.9263 -0.9148 0.9926 -0.9020 0.9953 -0.8764 1.0000

12-inch

ODR 1.0000

M1 -0.7337 1.0000

STD1 0.8245 -0.6640 1.0000

M2 -0.6993 0.9904 -0.6423 1.0000

STD2 0.8243 -0.6766 0.9977 -0.6575 1.0000

M3 -0.6832 0.9699 -0.6192 0.9881 -0.6390 1.0000

STD3 0.8379 -0.6665 0.9892 -0.6518 0.9935 -0.6420 1.0000

 24-inch

ODR 1.0000

M1 -0.7246 1.0000

STD1 0.5457 -0.5072 1.0000

M2 -0.7220 0.9863 -0.4397 1.0000

STD2 0.5718 -0.5323 0.9977 -0.4669 1.0000

M3 -0.7030 0.9455 -0.3497 0.9833 -0.3793 1.0000

STD3 0.6022 -0.5236 0.9868 -0.4550 0.9923 -0.3657 1.0000

Note: 1 indicates the visible red band; 2 indicates the visible green band; 3 indicates the visible blue band; M indicates mean; STD indicates 
standard deviation; and ODR indicates overall distress rate.
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Table 3. PCA Loadings of the Three Sets of Natural Color Digital Aerial Photography

Datasets Input Features PC M1 STD1 M2 STD2 M3 STD3 Proportion

 6-inch

M1, STD1, 
M2, STD2, 
M3, TD3

PCA1 -0.4121 0.4061 -0.4094 0.4083 -0.4022 0.4113 0.9399
PCA2 0.3313 0.4472 0.3926 0.4162 0.4914 0.3485 0.0568
PCA3 0.5719 -0.2041 0.2226 -0.0448 -0.6363 0.4182 0.0019
PCA4 -0.3650 -0.4431 0.0641 -0.2602 0.3184 0.7052 0.0008
PCA5 0.5072 -0.1174 -0.7890 0.0057 0.3005 0.1269 0.0005
PCA6 -0.0545 -0.6191 0.0455 0.7684 0.0160 -0.1451 0.0002

M3, STD3
PCB1 N/A N/A N/A N/A -0.7071 0.7071 0.9382
PCB2 N/A N/A N/A N/A 0.7071 0.7071 0.0618

M2, STD2
PCG1 N/A N/A -0.7071 0.7071 N/A N/A 0.9435
PCG2 N/A N/A 0.7071 0.7071 N/A N/A 0.0565

M1, STD1
PCR1 -0.7071 0.7071 N/A N/A N/A N/A 0.9469
PCR2 0.7071 0.7071 N/A N/A N/A N/A 0.0531

M1, M2, M3
PCS1 0.5772 N/A 0.5784 N/A 0.5319 N/A 0.9942
PCS2 -0.6196 N/A -0.1496 N/A 0.7705 N/A 0.0048
PCS3 0.5319 N/A -0.8019 N/A 0.2721 N/A 0.0010

STD1, STD2, 
STD3

PCT1 N/A 0.5774 N/A 0.5779 N/A 0.5767 0.9970
PCT2 N/A -0.5557 N/A -0.2393 N/A 0.7962 0.0027
PCT3 N/A 0.5981 N/A -0.7802 N/A 0.1830 0.0003

12-inch

M1, STD1, 
M2, STD2, 
M3, STD3

PCA1   -0.4112 0.4071 -0.4081 0.4114 -0.4021 0.4096 0.8216
PCA2 0.3849 0.4181 0.4149 0.4005 0.4278 0.4018 0.1707
PCA3 0.6219 -0.2356 0.0703 -0.0560 -0.6608 0.3361 0.0056
PCA4 0.4253 0.4615 -0.2630 0.2295 -0.1566 -0.6780 0.0012
PCA5 0.3392 -0.1144 -0.7630 -0.1575 0.4333 0.2776 0.0006
PCA6 0.0073 -0.6147 -0.0705 0.7679 0.0797 -0.1449 0.0002

M3, STD3
PCB1 N/A N/A N/A N/A -0.7071 0.7071 0.8287
PCB2 N/A N/A N/A N/A 0.7071 0.7071 0.1713

M2, STD2
PCG1 N/A N/A -0.7071 0.7071 N/A N/A 0.8210
PCG2 N/A N/A 0.7071 0.7071 N/A N/A 0.1790

M1, STD1
PCR1 -0.7071 0.7071 N/A N/A N/A N/A 0.8320
PCR2 0.7071 0.7071 N/A N/A N/A N/A 0.1680

M1, M2, M3
PCS1 0.5763 N/A 0.5759 N/A 0.5799 N/A 0.9885
PCS2 -0.6850 N/A 0.7273 N/A -0.0415 N/A 0.0101
PCS3 0.4457 N/A 0.3733 N/A -0.8137 N/A 0.0014

STD1, STD2, 
STD3

PCT1 N/A 0.5573 N/A -0.5776 N/A 0.5771 0.9956
PCT2 N/A 0.5765 N/A 0.7889 N/A 0.2128 0.0038
PCT3 N/A 0.5782 N/A -0.2098 N/A -0.7885 0.0005

 24-inch

M1, STD1, 
M2, STD2, 
M3, STD3

PCA1 -0.4248 0.4077 -0.4088 0.4159 -0.3792 0.4117 0.7181
PCA2 0.3518 0.4129 0.4127 0.3934 0.4701 0.3995 0.2726
PCA3 0.7108 0.0589 0.0464 0.0942 -0.6929 -0.0122 0.0065
PCA4 0.0234 -0.5681 0.0526 -0.2084 -0.0630 0.7916 0.0023
PCA5 0.4357 0.0142 -0.8087 -0.0758 0.3827 0.0615 0.0003
PCA6 0.0118 -0.5804 -0.0601 0.7837 0.0687 -0.2011 0.0002

M3, STD3
PCB1 N/A N/A N/A N/A -0.7071 0.7071 0.7536
PCB2 N/A N/A N/A N/A 0.7071 0.7071 0.2464

M2, STD2
PCG1 N/A N/A -0.7071 0.7071 N/A N/A 0.7334
PCG2 N/A N/A 0.7071 0.7071 N/A N/A 0.2666

M1, STD1
PCR1 -0.7071 0.7071 N/A N/A N/A N/A 0.6829
PCR2 0.7071 0.7071 N/A N/A N/A N/A 0.3171

M1, M2, M3
PCS1 0.5745 N/A 0.5825 N/A 0.5751 N/A 0.9812
PCS2 0.7206 N/A -0.0266 N/A -0.6929 N/A 0.0182
PCS3 0.3883 N/A -0.8124 N/A 0.4350 N/A 0.0007

STD1, STD2, 
STD3

PCT1 N/A 0.5763 N/A 0.5784 N/A 0.5773 0.9949
PCT2 N/A 0.7890 N/A -0.2098 N/A -0.5774 0.0047
PCT3 N/A 0.2129 N/A -0.7883 N/A 0.5773 0.0005

Note: PC indicates principal components; PCA1 – PCA6 indicate the six principal components extracted from the mean and standard deviation values of each of 
the three visible bands; PCB1 – PCB2 indicate the two principal components extracted from the mean and standard deviation values of the visible blue band; PCG1 
– PCG2 indicate the two principal components extracted from the mean and standard deviation values of the visible green band; PCR1 – PCR2 indicate the two prin-
cipal components extracted from the mean and standard deviation values of the visible red band; PCS1 – PCS3 indicate the three principal components extracted 
from the mean values of each of three visible bands; and PCT1 – PCT3 indicate the three principal components extracted from the standard deviation value of each 
of the three visible bands. 
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                           (a)                                            (b)                                            (c)

Figure 2. Correlation of predicted ODR versus actual ODR for (a) 6-inch, (b) 12-inch, and (c) 24-inch natural color digital aerial photography

Table 4. Model Fit for Prediction of ODR Values

Dataset
(Size: 50)

Model # Variables Coefficient Standard Error t P>|t| R2 Adjusted R2 RMSE Prob > F

 6-inch

Model 1

PCA1 41.08 1.45 28.35 <0.001*

0.9507 0.9439 24.087 <0.001*

PCA2 -13.32 5.89 -2.26 0.029*

PCA3 -35.14 32.42 -1.08 0.284

PCA4 167.81 48.97 3.43 0.001*

PCA5 15.06 64.32 0.23 0.816

PCA6 -319.63 112.31 -2.85 0.007*

Intercept 135.36 3.41 39.74 <0.001*

Model 2

PCA1 41.08 1.69 24.28 <0.001*

0.9266 0.9235 28.123 <0.001*PCA2 -13.32 6.88 -1.94 0.059

Intercept 135.36 3.98 34.03 <0.001*

 12-inch

Model 1

PCA1 38.68 2.95 13.11 <0.001*

0.8208 0.7958 45.843 <0.001*

PCA2 14.54 6.47 2.25 0.030*

PCA3 -38.51 35.68 -1.08 0.286

PCA4 -270.99 76.67 -3.53 0.001*

PCA5 -77.86 106.69 -0.73 0.469

PCA6 -420.17 175.41 -2.40 0.021*

Intercept 125.12 6.48 19.30 <0.001*

Model 2

PCA1 38.68 3.41 11.33 <0.001*

0.7378 0.7266 53.045 <0.001*PCA2 14.54 7.49 1.94 0.058

Intercept 125.12 7.50 16.68 <0.001*

 24-inch

Model 1

PCA1 37.15 3.97 9.36 <0.001*

0.7167 0.6771 57.645 <0.001*

PCA2 -11.95 6.44 -1.86 0.070

PCA3 44.86 41.66 1.08 0.288

PCA4 269.66 69.96 3.85 <0.001*

PCA5 31.45 186.91 0.17 0.867

PCA6 -337.52 266.20 -1.27 0.212

Intercept 125.12 8.15 15.35 <0.001*

Model 2

PCA1 37.15 4.51 8.24 <0.001*

0.6004 0.5834 65.484 <0.001*PCA2 -11.95 7.31 -1.63 0.109

Intercept 125.12 9.26 13.51 <0.001*

Note: PCA1 to PCA6 indicate the six principal components extracted from the mean and standard deviation values of each of the three visible 
bands; RMSE indicates root mean squared error; and * indicates the independent variable is significant at p = 0.05 level.
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Table 5. Test of a Variety of Options to Infer Overall Distress Rates

Dataset (Size: 50) Model # Variables Coefficient Standard Error t P>|t| R2 Adjusted R2 RMSE Prob > F

 6-inch

Model 
3

PCB1 71.24 3.03 23.52 <0.001*

0.9217 0.9184 29.041 <0.001*PCB2 -4.09 11.80 -0.35 0.731

Intercept 135.36 4.11 32.96 <0.001*

Model 
4

PCG1 70.80 2.98 23.77 <0.001*

0.9239 0.9206 28.643 <0.001*PCG2 -27.78 12.18 -2.28 0.027*

Intercept 135.36 4.05 33.42 <0.001*

Model 
5

PCR1 70.71 2.85 24.82 <0.001*

0.9301 0.9271 27.442 <0.001*PCR2 -36.70 12.03 -3.05 0.004*

Intercept 135.36 3.88 34.88 <0.001*

Model 
6

PCS1 -55.95 2.39 -23.38 <0.001*

0.9240 0.9190 28.924 <0.001*
PCS2 120.37 34.35 3.50 <0.001*

PCS3 -34.09 76.27 -0.45 0.657

Intercept 135.36 4.09 33.09 <0.001*

Model 
7

PCT1 53.73 2.99 17.94 <0.001*

0.8806 0.8728 36.252 <0.001*
PCT2 226.37 58.01 3.90 <0.001*

PCT3 241.83 165.58 1.46 0.151

Intercept 135.36 5.13 26.40 <0.001*

 12-inch

Model 
3

PCB1 67.17 5.83 11.52 <0.001*

0.7231 0.7113 54.510 <0.001*PCB2 19.39 12.97 1.49 0.142

Intercept 125.12 7.44 16.81 <0.001*

Model 
4

PCG1 66.45 5.91 11.24 <0.001*

0.7379 0.7268 53.030 <0.001*PCG2 31.01 12.66 2.45 0.018*

Intercept 125.12 7.50 16.68 <0.001*

Model 
5

PCR1 65.94 6.05 10.90 <0.001*

0.7418 0.7308 52.638 <0.001*PCR2 26.19 13.31 1.97 0.055

Intercept 125.12 7.71 16.23 <0.001*

Model 
6

PCS1 48.76 4.64 10.52 <0.001*

0.7129 0.6942 56.103 <0.001*
PCS2 104.05 74.77 1.39 0.171

PCS3 262.22 199.84 1.31 0.196

Intercept 125.12 7.93 15.77 <0.001*

Model 
7

PCT1 -41.79 5.61 -7.45 <0.001*

0.5832 0.5560 67.602 <0.001*
PCT2 116.54 55.58 2.10 0.042*

PCT3 -311.73 148.31 -2.10 0.041*

Intercept 125.12 9.56 13.09 <0.001*

 24-inch

Model 
3

PCB1 68.56 7.68 8.92 <0.001*

0.5677 0.5494 68.105 <0.001*PCB2 -11.40 11.28 -1.01 0.066

Intercept 125.12 8.89 14.07 <0.001*

Model 
4

PCG1 63.27 7.81 8.10 <0.001*

0.5917 0.5743 66.190 <0.001*PCG2 -20.21 12.95 -1.56 0.125

Intercept 125.12 9.36 13.37 <0.001*

Model 
5

PCR1 68.59 7.68 8.92 <0.001*

0.6317 0.6160 62.865 <0.001*PCR2 -11.40 11.28 -1.01 0.317

Intercept 125.12 8.89 14.07 <0.001*

Model 
6

PCS1 -42.78 5.99 -7.15 <0.001*

0.5285 0.4978 71.898 <0.001*
PCS2 27.26 43.98 0.62 0.539

PCS3 -82.25 231.18 -0.36 0.724

Intercept 125.12 10.17 12.31 <0.001*

Model 
7

PCT1 33.75 6.21 5.43 <0.001*

0.4856 0.4521 75.096 <0.001*
PCT2 290.84 90.70 3.21 0.002*

PCT3 -540.37 284.34 -1.90 0.064

Intercept 125.12 10.62 11.78 <0.001*

Note: PCB1 – PCB2 indicate the two principal components extracted from the mean and standard deviation values of the visible blue band; PCG1 
– PCG2 indicate the two principal components extracted from the mean and standard deviation values of the visible green band; PCR1 – PCR2 
indicate the two principal components extracted from the mean and standard deviation values of the visible red band; PCS1 – PCS3 indicate the 
three principal components extracted from the mean values of each of the three visible bands; PCT1 – PCT3 indicate the three principal compo-
nents extracted from the standard deviation value of each of the three visible bands; and * indicates the independent variable is significant at p 
= 0.05 level.
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resolution datasets. 

In order to investigate the principles of using HSR multi-
spectral digital aerial photography to infer ODR, we performed 
various linear regression models (Models 3 to 7) by using only 
one visible band and by using only spectral features (mean 
values) or texture features (standard deviation values). The 
results were summarized in Table 5. The results revealed that 
the visible red band best predicts ODR at all spatial resolutions 
(e.g., 6-inch dataset R2 >93% and RMSE <28), while visible 
blue band predicts ODR at the lowest certainty. Table 5 also 
revealed that when compared to texture features, spectral 
features predict ODR at a higher certainty (e.g., 6-inch dataset 
R2 >92% and RMSE <29). 

Results revealed that the regression model that uses all six 
principal components exhibited the best capability to predict 
ODR. Therefore, this model was selected for validation. Table 6 
shows the results of the 6-inch, 12-inch, and 24-inch regression 
models when using only half of the study sites for calibra-
tion (sample size =25). It shows that the R-squared value is 
decreased while the RMSE is increased for all three models, but 
not substantially. All three models are still valid at a 95 percent 
confidence interval (joint P-value (Prob >F) is less than 0.001). 

The other 25 study sites were used to independently 
validate predicted (model-generated) ODR values versus actual 
(ground reference) ODR values, the RMSE, mean absolute er-
ror, and standard error of which are shown in Table 7. Not 
surprisingly, the RMSE for each model is higher when vali-
dated using holdout samples and predicted using the smaller 
sample size of 25 to develop the model, but not substantially. 
In addition, the mean absolute error and standard error are in-
creased when the resolution becomes coarser, but all are less 
than an error of 84 that manual evaluation can exhibit.

Table 7. Error Summary for Predicted ODR
Dataset (Size: 25) RMSE Mean Absolute Error Standard Error

 6-inch 42.8826 35.0000 5.0577

12-inch 63.1958 43.7600 9.3070

 24-inch 72.5551 66.2400 12.0770

Validation results, consistent with model fits, show that 
the 6-inch aerial photography results in the lowest error when 
compared to manual evaluation results, whether measured by 
RMSE, mean absolute error, or standard error. Therefore, we 
conclude that ODR can be most effectively predicted by the 
6-inch aerial photography. While none of the models can be 
used to detect detailed distress (e.g., cracks) or vertical dis-
tress (e.g., rutting), all models indicate potential for the direct 
estimation of ODR with less error than manual approaches.

One limitation of the proposed method is that it cannot 
be used for high traffic volume sections. This is because 
vehicles are considered as unwanted features on the pave-
ment. Too many vehicles present in the images could reduce 
the area of pavement observed to such a degree that distress 
cannot be accurately evaluated. This proposed method also 
must use reference pavement surface distress rates (collected 
either through manual evaluation or automatic evaluation) to 
develop initial model calibrations. 

Conclusions
Routine evaluation of pavement surface condition is a chal-
lenge to all transportation agencies. In the real world, it is 
impossible to get exhaustive condition data for all pavement 
surfaces. Current methods for pavement surface distress 

Table 6. Model Validation for Prediction of ODR Values

Dataset (Size: 25) Variables Coefficient Standard Error t P>|t| R2 Adjusted R2 RMSE Prob > F

 6-inch

PCA1 46.03 3.22 14.29 <0.001*

0.9232 0.8976 37.206 <0.001*

PCA2 -13.17 11.74 -1.12 0.277

PCA3 -102.89 61.00 -1.69 0.109

PCA4 264.22 129.98 2.03 0.057

PCA5 -43.32 152.78 -0.28 0.780

PCA6 -539.59 272.10 -1.98 0.063

Intercept 137.28 7.44 18.45 <0.001*

 12-inch

PCA1 45.33 5.12 8.85 <0.001*

0.8178 0.7571 57.309 <0.001*

PCA2 -4.55 13.65 -0.33 0.743

PCA3 42.88 59.73 0.72 0.482

PCA4 -175.53 143.74 -1.22 0.238

PCA5 50.69 241.64 0.21 0.836

PCA6 187.02 335.35 0.56 0.584

Intercept 137.28 11.46 11.98 <0.001*

 24-inch

PCA1 33.06 7.73 4.28 <0.001*

0.7166 0.6222 71.476 <0.001*

PCA2 -42.78 9.45 -4.53 <0.001*

PCA3 125.42 76.79 1.63 0.120

PCA4 -231.38 118.32 -1.96 0.066

PCA5 -88.60 300.07 -0.30 0.771

PCA6 194.58 486.38 0.40 0.694

Intercept 137.28 14.30 9.60 <0.001*

Note: PCA1 and PCA6 indicate the six principal components extracted from the mean and standard deviation values of each of the three visible 
bands; RMSE indicates root mean squared error; and * indicates the independent variable is significant at p = 0.05 level.
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evaluation are labor-intensive, time-consuming, and ex-
pensive. To overcome these limitations, we present a novel 
approach for overall pavement surface condition evaluation 
through the analysis of routinely-acquired and publically-
available HSR multispectral digital aerial photographs. These 
images are already paid for through a variety of means, per-
mitting a dramatic reduction in the cost of intensive survey 
through manual or automated samples, making it extremely 
practical and immediately implementable across all regions 
without tree cover. Our results have shown that natural color 
aerial photographs of 6-inch spatial resolution can be used to 
evaluate the overall pavement distress conditions with a high 
degree of certainty (R2 >95%). At a lesser degree of certainty, 
12-inch and 24-inch natural color aerial photographs can also 
be used to detect overall pavement conditions. When consid-
ering the associated cost, the lower resolution aerial photo-
graphs can be potentially applied to evaluate overall pave-
ment surface distress for rapid, high-level information checks. 
Our results also have shown that visible red band or spectral 
features alone can be used to estimate the overall pavement 
conditions with a high degree of certainty (R2 >92%).

The proposed method of detecting pavement surface dis-
tress conditions by analyzing HSR multispectral, digital aerial 
photography could be used as a predictor of overall distress 
conditions in situations where field inspectors cannot evalu-
ate except with considerable labor (e.g., sections in remote ar-
eas). It is not likely that the proposed method will completely 
replace field pavement surface inspection due to its lack of 
crack-level detailed pavement surface information and the 
necessity of using field pavement surface inspection results 
as reference data to develop the regression models. How-
ever, the spectral response in HSR multispectral digital aerial 
photography presents additional information not considered 
in field inspection and could be used to predict the overall 
pavement surface conditions in un-sampled areas based on 
a dramatically reduced number of intensive survey sites. 
Therefore, it can reduce the amount of work, time, and money 
associated with pavement surface evaluation. Operationally 
this proposed approach could be readily implemented as a 
service internally by transportation agencies such as NMDOT 
or implemented through consulting firms. Eventually this 
proposed method could be automated through software devel-
opment. Such software would only require users to insert the 
pavement surface distress rates of a limited number of manual 
survey sites, add associated HSR multispectral digital aerial 
photography, and upload the evaluation polygon, while the 
computing-intensive processes such as eliminating unwanted 
features is fully automated.
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